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8.1 (a) Let D be the domain in the Einstein cylinder (R×S3, gE), gE = −dt2+gS3 , which is the im-
age of Minkowski spacetime (R3+1, η) under the conformal map (u, v) → (Arctan(u),Arctan(v))
that we saw in class. Let p be a point on future null in�nity I+ ⊂ ∂D and consider the
set C−(p) ∩ D of past null geodesics emanating from p restricted to D. How does this
set look like in the standard Cartesian coordinates of R3+1? Deduce that every pair of
null geodesics of (R3+1, η) asymptoting in the future to the same point on I+ have to
asymptote in the past to the same point on I−.

(b) Let (M3+1, g) be a spherically symmetric spacetime without axis, i.e. M3+1 = U1+1 × S
2

and, in any local coordinates (x1, x2) on U ,

g = g̃ABdx
AdxB + r2gS2 ,

where g̃ is a Lorentzian metric on U and r : U → (0,+∞) is a smooth function. The
spacetime (U , g̃) is known as the Penrose diagram of (M, g) and can be formally thought
of as the projection U = M/SO(3). Show that the image γ̃ in U of a causal curve γ in M
is again a causal curve (hence, Penrose diagrams are useful 2-dimensional tools to read-o�
the causal structure of a 4 dimensional spacetime). In which case is the projection of a
null curve in M again a null curve in U?

Solution.

8.2 (a) Show that the Schwarzschild metric

gM = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
(1)

on M = Rt × (2M,+∞)r × S
2 is indeed a solution of the vacuum Einstein equations.

(b) Show that (M, gM) embeds isometrically into M̃ = Rt∗ × (0,+∞)r × S
2 with

gM̃ = −
(
1− 2M

r

)
(dt∗)2 +

4M

r
dt∗dr +

(
1 +

2M

r

)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
(Hint: Use the coordinate transformation t∗ = t+ f(r) for a suitable f(r).) Show that, in
the extended spacetime, the region {r ⩽ 2M} corresponds to a black hole, that is to say,
no future directed causal curve starting from {r ⩽ 2M} can end up in the asymptotically
region {r ≫ 1}.

Solution. (a) In the (t, r, θ, ϕ) coordinates on M, the matrix [(gM)µν ] of the Schwarzschild metric
takes the diagonal form

gM =


−
(
1− 2M

r

)
0 0 0

0
(
1− 2M

r

)−1

0 0

0 0 r2 0
0 0 0 r2 sin2 θ


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and, therefore, the inverse matrix [(gM)µν ]
−1 = [gµνM ] is

g−1
M =


−
(
1− 2M

r

)−1

0 0 0

0
(
1− 2M

r

)
0 0

0 0 r−2 0
0 0 0 r−2 sin−2 θ

 .

We can thus compute the Christo�el symbols of g through the formula

Γλ
µν =

1

2
gκλ

(
∂µgκν + ∂νgκµ − ∂κgµν

)
as follows (note that, since (gM)µν is independent of t, ϕ, any Christo�el symbol which only contains
∂t and ∂ϕ derivatives of gM , such as Γt

tϕ, vanishes; note also that the only metric component depending
non-trivially on θ is gϕϕ):

Γr
tt =

M

r2

(
1− 2M

r

)
, Γr

rr = −M

r2

(
1− 2M

r

)−1

, Γr
θθ = −(r − 2M), Γr

ϕϕ = −(r − 2M) sin2 θ,

Γt
tr =

M

r2

(
1− 2M

r

)−1

,

Γθ
rθ = r−1, Γθ

ϕϕ = − sin θ cos θ,

Γϕ
rϕ = r−1, Γϕ

θϕ = cot θ,

and the rest of the Christo�el symbols vanish. For convenience, let us also compute the following
expressions (recall that repeated indices are assumed to be summed over):

Γα
αt = 0, Γα

αr =
2

r
, Γα

αθ = cot θ, Γα
αϕ = 0.

Using the expression
Rα

βγδ = ∂γΓ
α
βδ − ∂δΓ

α
βγ + Γα

γκΓ
κ
βδ − Γα

δκΓ
κ
βγ

for the components of the Riemann curvature tensor, we readily obtain the following general expres-
sion for the components of the Ricci tensor Ricµν = Rα

µαν :

Ricµν = ∂αΓ
α
µν − ∂νΓ

α
αµ + Γα

ακΓ
κ
µν − Γα

νκΓ
κ
αµ.

Thus, we can readily calculate in the case of the Schwarzschild metric using our calculation of the
Christo�el symbols above (and ignoring the vanishing Christo�el symbols in the corresponding sums
involving repeated indices) all the components of the Ricci tensor:

Rictt = ∂αΓ
α
tt − ∂tΓ

α
αt + Γα

ακΓ
κ
tt − Γα

tκΓ
κ
αt

= ∂rΓ
r
tt + Γα

αrΓ
r
tt − Γr

ttΓ
t
rt − Γt

trΓ
r
tt

= ∂r

(M
r2

(
1− 2M

r

))
+

2

r
· M
r2

(
1− 2M

r

)
− 2

M

r2
(
1− 2M

r

)
· M
r2

(
1− 2M

r

)−1

Page 2



EPFL� Fall 2024

Series 8

Di�erential Geometry IV:

General relativity
G. Moschidis

6 Nov. 2024

= 0,

Rictr = ∂αΓ
α
tr − ∂rΓ

α
αt + Γα

ακΓ
κ
tr − Γα

rκΓ
κ
αt

= 0

Rictθ = Rictϕ = 0

Ricrr = ∂αΓ
α
rr − ∂rΓ

α
αr + Γα

ακΓ
κ
rr − Γα

rκΓ
κ
αr

= ∂rΓ
r
rr − ∂rΓ

r
rr − ∂rΓ

t
tr − ∂rΓ

θ
θr − ∂rΓ

ϕ
ϕr + Γα

αrΓ
r
rr − (Γr

rr)
2 − (Γt

tr)
2 − (Γθ

θr)
2 − (Γϕ

ϕr)
2

= 0− ∂r

(
− M

r2
(
1− 2M

r

)−1
)
− 2∂r

(1
r

)
+

2

r
·
(
− M

r2
(
1− 2M

r

)−1
)
−
(
− M

r2
(
1− 2M

r

)−1
)2

−
(M
r2

(
1− 2M

r

)−1
)2

− 2
(1
r

)2

= 0

Ricrθ = Ricrϕ = 0

Ricθθ = ∂αΓ
α
θθ − ∂θΓ

α
αθ + Γα

ακΓ
κ
θθ − Γα

θκΓ
κ
αθ

= ∂rΓ
r
θθ − ∂θΓ

ϕ
ϕθ + Γα

αrΓ
r
θθ − 2Γθ

θrΓ
r
θθ − (Γϕ

ϕθ)
2

= ∂r
(
− (r − 2M)

)
− ∂θ cot θ +

2

r
·
(
− (r − 2M)

)
− 2

r

(
− (r − 2M)

)
− (cot θ)2

= 0

Ricθϕ = Ricϕϕ = 0.

(note that we can deduce that RictA = RicrA = 0 for A = θ, ϕ without doing the tedious computa-
tions, using simply the spherical symmetry of the metric: The quantities RictA, RicrA for �xed t, r are
simply vector �elds on the sphere {t, r = const} which have to be invariant under spherical rotations
(since gM has this property); however, any tangent vector at any point p ∈ S

2 which is invariant
under spherical rotations �xing p (and hence rotations of TpS

2) has to be the 0 vector. Similarly,
RicAB for A,B ∈ {θ, ϕ} has to be a symmetric (0, 2)-tensor on the sphere which is invariant under
rotations, thus Ricθθ = 0 implies that RicAB = 0 for A,B ∈ {θ, ϕ}).

(b) Using a coordinate transformation (t, r, θ, ϕ) → (t∗, r, θ, ϕ) for t∗(t, r) = t+f(r) (for a smooth
function f : (2M,+∞) → R to be determined shortly), we can readily calculate that, in the new
coordinate system:

dt = dt∗ − f ′(r)dr, , dr = dr, dθ = dθ, dϕ = dϕ.

Therefore, substituting in the expression for the metric, we obtain that in the (t∗, r, θ, ϕ) system gM
looks as follows:

gM = −
(
1− 2M

r

)
(dt∗ − f ′dr)2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 sin2 θdϕ2

)
= −

(
1− 2M

r

)
(dt∗)2 + 2

(
1− 2M

r

)
f ′(r)dt∗dr +

[
−
(
1− 2M

r

)
(f ′(r))2 +

(
1− 2M

r

)−1]
dr2 + r2

(
dθ2 sin2 θdϕ2

)
.
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Therefore, choosing f(r) = 2M log(r − 2M) in order to achieve

−
(
1− 2M

r

)
(f ′(r))2 +

(
1− 2M

r

)−1

= 1 +
2M

r
,

we infer that

gM = −
(
1− 2M

r

)
(dt∗)2 +

4M

r
dt∗dr +

(
1 +

2M

r

)
dr2 + r2

(
dθ2 sin2 θdϕ2

)
.

Note that the original manifoldM is identi�ed in the (t∗, r, θ, ϕ) coordinates with Rt∗×(2M,+∞)×S2.
Therefore, the inclusion map ι : M = Rt∗×(2M,+∞)×S2 → Rt∗×(0,+∞)×S2 = M̃, ι(t∗, r, θ, ϕ) =
(t∗, r, θ, ϕ), is an isometry (since (gM)µν = (gM̃)µν in these coordinates). It is also easy to verify that
M̃ covers precisely the regions I + II of the maximally extended Schwarzschild spacetime: This
can be seen, for instance, by noting that the coordinate transformation (t∗, r) → (v, r∗) where
r∗ = r + 2M log(r − 2M) and v = t + r∗ on M, extends smoothly on the whole of M̃; note that,
as we saw in class, the maximal domain of the (v, r∗) coordinates covers precisely the regions I + II
of the maximally extended Schwarzschild spacetime. Alternatively, one can argue usiing the Penrose
diagram of Schwarzschild and noting that M̃ contains the maximal future extension of all radial
future directed null geodesics emanating in M, but that any radial past directed null geodesic that
is inextendible in M is also inextendible in M̃.

8.3 (a) Let γ(s) = (t(s), r(s), θ(s), ϕ(s)) be a geodesic in the Schwarzschild (exterior) spacetime
(M, gM). Show that the geodesic equation takes the form

d

ds

((
1− 2M

r

)
ṫ
)
= 0,

d

ds

((
1− 2M

r

)−1
ṙ
)
=

1

2

(
− 2M

r2
ṫ2 −

(
1− 2M

r

)−22M

r2
ṙ2 + 2rθ̇2 + 2r sin2 θϕ̇2

)
,

d

ds

(
r2θ̇

)
=

1

2
r2 sin θ cos θϕ̇2,

d

ds

(
r2 sin2 θϕ̇

)
= 0.

Deduce that one can without loss of generality one can consider geodesics lying in the
equatorial plane θ = π

2
(by possibly rotating the coordinate system (θ, ϕ) on S

2.) Note
that, in this case, the �rst and fourth of the equations above reduce to the statement that
the energy E and angular momentum L of a geodesic are constant (i.e. are constants of
motion for the geodesic �ow).

(b) Show that there exist �trapped� null geodesics orbitting the black hole (i.e. null geodesics
that never approach r = 2M or r = ∞) (Hint: For an appropriately chosen value of

r = r0 > 2M , show that there exist null geodesics with r(s) = r0 for all s.. Contrast this
with the situation on Minkowski spacetime.
Remark. The region traced out by trapped null geodesics consists the so-called photon

sphere of a black hole.
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(c) Show that, for any µ > 0, there exist timelike geodesics γ in the Schwarzschild spacetime
with g(γ̇, γ̇) = −µ which are trapped. (Hint: It might be convenient, instead of working

with the second order equations, to use the invariants of the geodesic �ow and obtain a

relation for ṙ and observe that, for an appropriate choice of E,L and r(0), r(s) cannot

escape a bounded interval in r.)
Remark. These timelike orbits correspond to massive objects (e.g. planets) moving under
the in�uence of gravity in Schwarzschild spacetime. Unlike the trapped null geodesics,
these orbits are stable, namely they remain trapped even under small perturbations of the
initial condition r(0) and the conserved quantities E,L, µ (were these trapped orbits not
stable, earth would plunge in the sun under small perturbations of its orbit).

Solution.

(a) We can readily express the geodesic equation ẍµ + Γµ
αβẋ

αẋβ = 0 in the (t, r, θ, ϕ) coordinate
system on Schwarzschild exterior using the calculation of the Christo�el symbols for the Schwarzschild
metric in Exercise 7.1. Recall that we computed:

Γr
tt =

M

r2

(
1− 2M

r

)
, Γr

rr = −M

r2

(
1− 2M

r

)−1

, Γr
θθ = −(r − 2M), Γr

ϕϕ = −(r − 2M) sin2 θ,

Γt
tr =

M

r2

(
1− 2M

r

)−1

,

Γθ
rθ = r−1, Γθ

ϕϕ = − sin θ cos θ,

Γϕ
rϕ = r−1, Γϕ

θϕ = cot θ,

and the rest of the Christo�el symbols vanish.
Let s → γ(s) = (t(s), r(s), θ(s), ϕ(s)), be a geodesic with the property that θ(0) = π

2
and θ̇(0) = 0.

We will show that θ(s) = π
2
for all s. To this end, by the uniqueness property for solutions to the

initial value problem for the geodesic equation, it su�ces to show that the system of geodesic equation
admits a solution of the form γ̄(s) = (t(s), r(s), π

2
, ϕ(s)) with γ̄(0) = γ(0) and ˙̄γ(0) = γ̇(0). Setting

θ = π
2
in the system of equations, we obtain the following reduced system for (t(s), r(s), ϕ(s)):

d

ds

((
1− 2M

r

)
ṫ
)
= 0, (2)

d

ds

((
1− 2M

r

)−1
ṙ
)
=

1

2

(
− 2M

r2
ṫ2 −

(
1− 2M

r

)−22M

r2
ṙ2 + 2rϕ̇2

)
, (3)

d

ds

(
r2ϕ̇

)
= 0. (4)

Note that the equation for θ(s), namely

d

ds

(
r2θ̇

)
=

1

2
r2 sin θ cos θϕ̇2,

is trivialy satisi�ed when θ(s) = π
2
. Thus, if (t(s), r(s), ϕ(s)) is the (unique) solution of the ODE sys-

tem (2) with the initial data at s = 0 associated to (γ(0), γ̇(0)), then the curve γ̄(s) = (t(s), r(s), θ(s) =
π
2
, ϕ(s)) is a solution of the original geodesic system of equations.
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If s → γ(s) = (t(s), r(s), θ(s), ϕ(s)) is a geodesic with (θ(0), ϕ(0)) = (θ0, ϕ0) = p ∈ S
2 and

(θ̇(0), ϕ̇(0)) = (θ1, ϕ1) = v ∈ T(θ0,ϕ0)S
2, then by changing the coordinate system on S

2 through an
appropriate rotation (chosen in a way so that the point p lies on the equator θ′ = π

2
and the tangent

vector v is parallel to the same equator) we end up in the simpler case θ0 = π
2
, θ1 = 0. Therefore,

when studying the properties of a single geodesic γ on Schwarzschild spacetimes, we can always
assume that the coordinate system on the spheres of symmetry has been chosen so that γ lies in the
equatorial plane θ = π

2
.

(b) Let s → γ(s) = (t(s), r(s), θ(s), ϕ(s)) be a geodesic. Without loss of generality, we can assume
(as explained in the previous part of this exercise) that θ(s) = π

2
. The quantities

µ = −g(γ̇, γ̇), E = −g(γ̇, ∂t), L = g(γ̇, ∂ϕ),

are constant along γ (µ is constant along a geodesic on any Lorentzian manifold, while E and L are
the conserved quantities associated to the Killing vector �elds ∂t and ∂ϕ). Using the expression of
the Schwarzschild metric in the (t, r, θ, ϕ) coordinates, we calculate

E =
(
1− 2M

r

)
ṫ, L = r2ϕ̇

and, therefore,

µ =
(
1− 2M

r

)
ṫ2 −

(
1− 2M

r

)−1

ṙ2 − r2ϕ̇2 =
E2

1− 2M
r

−
(
1− 2M

r

)−1

ṙ2 − L2

r2
,

which can be reexpressed as

ṙ2 = E2 −
(
1− 2M

r

)(L2

r2
+ µ

)
. (5)

The second order ODE for r(s) takes the following form in terms of the conserved quantities E,L, µ:

d

ds

((
1− 2M

r

)−1
ṙ
)
= − 2M

(r − 2M)2
E2 +

(r −M)

r3(r − 2M)
L2 +

M

r(r − 2M)
µ. (6)

In the case when γ is a null geodesic, we have µ = 0 and E ̸= 0 (since the inner product of two
non-zero causal vectors cannot vanish). Thus, the relation (5) takes the form

ṙ2 = E2
(
1− V (r)

L2

E2

)
,

where V (r) = 1
r2

− 2M
r3
. Note that the function V has a local maximum V (r0) =

1
27M2 at r0 = 3M .

Therefore, if we choose the initial data of the geodesic so that E2 = V (r0)L
2 and r(0) = r0, then

the above relation implies that ṙ(0) = 0. In this case, it is easy to verify that for those values of
E,L, µ and r, the right hand side of the ODE (6) also vanishes. Therefore, the unique solution of
the corresponding initial value problem is going to be r(s) = r0 = 3M . Notice that this is a null
geodesic that neither escapes to r = +∞ nor crosses the event horizon at r = 2M .

It is also easy to verify that there is no value r1 ̸= r0 such that there exists a null geodesic with
r(s) = const = r1 (this is because for such a value of r the right hand sides of both (5) and (6) have
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to vanish); in view of the fact that the hypersurface r = r0 contains the orbits of �trapped photons�,
it is called the photon sphere of the Schwarzschild black hole.

(c) Let us examine the relation (5) for µ > 0. Note that this relation takes the form

ṙ2 = E2 − FL,µ(r),

with

FL,µ(r) =
(
1− 2M

r

)(L2

r2
+ µ

)
.

Our aim is to show that, in this case, there exist appropriate choices of E,L such that the function
FL,µ above has the property that there exist r2 > r1 > 2M such that E2 −FL,µ(r) ⩾ 0 for r ∈ [r1, r2]
and E2 −FL,µ(r) < 0 for r ∈ [r1 − δ)∪ (r2,+δ). If this is indeed the case, then it would immediately
follow that any geodesic γ(s) with these values for its conserved quantities starting from a point with
r(0) ∈ [r1, r2] will never be able to escape this r-interval, since r(s) will have to change continuously
with s and, by the above relation,

E2 − FL,µ(r(s)) = ṙ2(s) ⩾ 0 for all s.

We can rearrange the terms in the expression h(r) = E2 − FL,µ(r) as follows:

h(r) = (E2 − µ) +
1

r

(
2Mµ− L2

r

)
+

2M

r3
L2.

From the above expression, it can be easily seen that, for any R > 0 su�ciently large and 0 < ϵ < 4Mµ
3R

su�ciently small, if E2 = µ− ϵ and L2 is chosen to satisfy

Mµ− 1
4
Rϵ

1− 4M
R

<
L2

R
<

2Mµ−Rϵ

1− 2M
R

(note that the above range is indeed non-empty if R is su�ciently large and ϵR su�ciently small)
then the function h has the property that there exist r1 ∈ (R

2
, R) and r2 > R such that

h(r) ⩾ 0 on [r1, r2], h(r) < 0 on [
R

2
, r1) ∪ (r2,+∞).
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